
Magnetic short-range order in iron above Tc? Statistical mechanics with many-atom

interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 6455

(http://iopscience.iop.org/0953-8984/3/33/022)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Maner3 (1991) 6455-6471. Printed in the UK 

Magnetic short-range order in iron above T,? Statistical 
mechanics with many-atom interactions 

K S Chanat, J H Samsont, M U  Luchinit and Volker Heines 
t Department of Physics, University of Technology, Loughborough, L e i s  LE11 3TU, 
UK 
$ Theoretirche Physik, ETH-Honggerberg, CH-8093, Ziirich. Switzerland 
5 Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 7 February 1991, in final form 21 May 1991 

Abstract. An effective spin Hamiltonian for iron hasbeen derived previously [romelectronic 
StNCtuUre calculations; there are strong many-atom interactions, The exchange interactions 
I,, depend on the surrounding magnetic order. We investigate the magnetization and spin 
correlation functioninironon this basisin two ways: byfiningtheJ,,toananalyticallysoluble 
Hamiltonian (an extended spherical model) and by Monte Carlo simulation. Short-range 
many-atom interactions do not lead to substantial short-range order in the paramagnetic 
state; the behaviour closely resembles that of the nearest-neighbour Heisenberg model. 
The main effect is a slight distortion of the magnetization curve below Tc. Longer-range 
oscillatory pair interactions are needed for short-range order, but are not supported by the 
electronic structure data. We conclude that calculations of the electronic energy in static 
configurations do not lead to unusual short-range order. 

1. Introduction 

Considerable controversy has surrounded the paramagnetic phase of metallic magnets. 
It is now generally accepted that the ground state can be well described by band theory 
and the Stoner model, and the phase transition by disordering of magnetic moments. 
An unresolved issue is that of the existence and extent of magnetic short-range order 
(SRO) above the Curie temperature T,, in excess of that normally expected as critical 
fluctuations in a short-range Heisenberg model. The controversy was started by the 
inelastic neutron scattering data of Mook et a1 (1973). on nickel, and Lynn (1975), on 
iron. Their observations indicated the persistence of spin waves well above Tc. Shirane 
(1984) and Shirane et a/ (1986), however, interpreted the constant energy peaks in 
Fe as slices of a simple paramagnetic scattering function without the need to invoke 
substantials~oorpropagatingspin waves.Themaindistinction betweenFeanda typical 
magnetic insulator is that considerably less high-q scattering is observed in the case of 
Fe, and the integrated structure factor is less than the expected S(S + 1) (Brown et a1 
1982, Johnson et a/ 1987). Two schoolsof thought emerged from these observations. On 
the one hand the fluctuating local band theory (FLBT) of Korenman eta/ (1977) assumed 
SRO to exist from the outset; above Tc the spin direction vanes sufficiently smoothly for 
a local band structure and broadened spin waves to be supported. On the other hand 
Edwards (1980,1983) argued that this interpretation was incompatible with thermal and 
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susceptibility data which showed a normal transition, and that SRO was not needed to 
explain the neutron data, which cover a restricted energy window. The disordered local 
moment (DLM) picture of Hubbard (1979a, b), Hasegawa (1980) and others, in which 
the nearest-neighbour correlation is zero in the paramagnetic state, is compatible with 
the susceptibility and thermal data. Lowde er a1 (1983) describe a further modcl of an 
itinerant magnet with coarse-grained disorder: large blocks of reversed magnetization 
develop at temperatures just below Tc. These are larger than those normally expected 
from critical fluctuations. This is an alternative picture to the smooth magnetization of 
FLBT. They interpret their neutron data on an impure sample of nickel in terms of 
such a block model. Angle-resolved photoemission studies of the band splitting in the 
electronic structure of paramagnetic iron also suggest the existence of SRO (Haines el al 
1985, Kisker era1 1985). 

The picture was then one of some confusion as to the high-temperature state of an 
itinerant magnet. Can we make do  with a DLM description as is appropriate for an 
insulator such as EuO? Or is there substantial SRO and, if so, is it  of the  smooth ~ B T  
t p e  or in the form of blocks? If the transition were driven entirely by spin waves, then 
the wavevector at which disorder occurs should be related to the maximum wave vector 
qc of spin waves: this corresponds to the zone boundary for insulators. but to the point 
at which the spin waves enter the Stoner continuum for itinerant magnets (Heine and 
Joynt 1988). Perhaps there was a direct way of finding the dominant configurations of 
the magnetization through electronic structure calculations of the energies of some trial 
configurations: if the energies of certain configurations  are substantially lower than 
would be expected from a Heisenberg model, they would contribute more to the 
thermodynamic ensemble. Now the recursion method (see, e.g., Haydock 1980) pro- 
vides a method for calculating electronic properties of non-periodic systems, such as 
the energies of random configurations of the magnetization. These ideas led to our 
programme of work on iron (Lin-Chung and Holden, Heine et a1 1981, You and Heine, 
Holden and You 1982, Samson 1983, Small and Heine 1981, Luchini and Heine 1989, 
1991, a, b), mostlyconcerned with the energeticsofconfigurations ofthe magnctization 
rather than the statistical mechanics. We calculate the energy of the electron gas in an 
exchange field {Ai}, an effective magnetic field on each site; this will give us an effective 
spin Hamiltonian. 

The overall picture, that the statistical mechanics of an itinerant magnet should be 
that of a classical spin Hamiltonian of this form, is based on the Hubbard model, which 
we take to be a microscopic description of Fe. A spin Hamiltonian emerges from the 
Hubbard model as a static approximation to a functional integral (see e.g. Hubbard 
1979a. b); the statistical mechanics of an ifinerant magnet is that of a classical spin 
Hamiltonian given by the energy of non-interacting electrons in an exchange field. The 
band parameters and exchange integrals are obtained from fits to paramagnetic and 
ferromagnetic band structures. Our main approximation is then the static approxi- 
mation. 

There are various ways in which the resulting data on the energies can be used. One 
can attempt to  fit the data to a classical Heisenberg Hamiltonian of the form 
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H = - C J . i . . O ,  a t  I (1.1) 
4 

where ki is the direction of the magnetic moment on atom i. The magnetic moment on 
atom i is in#, and the exchange splitting is Ai i ;  we have absorbed the spin into the J,i, 
This assumes pairwise exchange interactions J,i (which could be of fairly long range). 
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Alternatively, one can calculate the energies H(@& of a number of configurations and 
defme the exchange interactions as 

These are in general functionsof the exchange field; they correspond to theJ,of equation 
(1.1) only if they are constant and isotropic in spin space. We will take equation (1.2) as 
our definition of Jii. The dominant fluctuations (in iron at least) are assumed to be 
transverse; the magnitude of the magnetic moment in iron is found to vary little between 
the fully aligned ferromagnetic (FM) and DLM states (Samson 1983), suggesting that 
although the Heisenberg Hamiltonian may not be appropriate, the phase space is the 
same. 

A further approach, one that assumes less about the form of the Hamiltonian, is to 
calculate the energies of various configurations and attach an entropy to each. The 
entropy corresponds to the number of configurations in phase space which are ‘similar 
to’ the chosen configuration, for example by finding the equivalent frozen spin wave 

Jg” = -t(a2H/a& 367) wherep ,v=x ,yorz .  (1.2) 

Ai = A(sin 0 cos q . r i ,  sin e sin q . ri, cos e). (1.3) 
There are three parameters here: the amplitude A of the exchange field, the order 
parameter or reduced magnetization (cos e) and a SRO parameter, the spin wave vector 
q. The thermodynamics can then be found by minimizing the free energy: 

F = min [E(A, 8, q)  - TS(A,  8, q)].  
A.84 

(1.4) 

The entropy may be calculated in closed form in terms of lattice Green functions. Such 
an idea was proposed by Heine and Joynt (1988) and developed by Samson (1989). This 
reduces to mean field theory (MFT) if the energy is independent of the SRO parameter, 
and to the spherical model of Berlin and Kac (1952) if the energy is linear in the order 
parameter and the SRO parameter. We will therefore call this approach the extended 
spherical model (ESM). 

Suppose we only know the dependence of the energy and entropy on one parameter, 
which we shall call the order; we have deliberately left this vaguely defined for the 
present. It is some quantity that falls from 1 in the FM state to 0 in the DLM state and 
dependson both the magnetization and t h e s ~ o .  Suppose also that there is astrong kink 
in the energy as a function of order, as described by Heine and Joynt (1988) and Luchini 
and Heine (1991a, b) (referred to below as LH), so that the energy rises slowly at first 
and then much more rapidly with decreasing order. This will indeed tend to favour states 
with that value of the order. But is this long- or short-range order? Let us consider all 
microstates consistent with that value of the order in the thermodynamic limit. If the 
order is large, almost all of these microstates will have non-zero magnetization. If the 
order is small, almost all of these microstates will have zero magnetization (strictly 
O(l/dN)). The value of the order at which the magnetization becomes non-zero will 
be the SRO at Tc. This means that the kink in the energies will either lead to a distorted 
magnetization curve or to substantial SRO above Tc, depending on whether the kink 
comes above or below the critical value of the order. If the order is a weighted sum of 
terms such as (Ai. Aj),its critical value may be calculated by the ESM (Samson 1989); for 
example, if the order IS taken to be the nearest-neighbour correlation in a BCC lattice, 
the critical value is 0.282. If the order depends on longer-range correlations, the critical 
value of order may be higher (and the critical temperature correspondingly lower). We 
must therefore choose a definition of the order carefully, so that the surfaces of constant 
order approximate constant energy surfaces in phase space. 
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Heine and Joynt (1988) argue that the magnon cutoff qc should show up as a kink in 
a.plot of the energies of configurations against the wave vector q of the disorder as the 
magnons enter the Stoner continuum. A pronounced kink at some length scale might 
determine theamount oforder; the paramagneticstate would be broken upintodomains 
of this size. Such a kink was indeed seen in the first d-band tight-binding calculations of 
spin spirals, configurations of the form (1.3) with 0 = n/Z (You and Heine 1982, Holden 
and You 1982). They also studied alternating tilt configurations, corresponding to zone 
boundary spin waves ( s inq .r ,  = 2 1  in equation (1.3)). Luchini and Heine (1989) 
extended these calculations by using a full spd tight-binding Hamiltonian, finding only 
a small kink at qc. Fitting these energies to a Heisenberg model leads to values for the 
exchange interactions J ,  and hence the Curie temperature and spin wave stiffness D. 
These interactions are of fairly long range and oscillate in sign. A study of these energies 
by the ESM has however failed to find any support for the existence of SRO (Samson 
1989). It is difficult to see how SRO can be obtained from pure pair interactions of the 
form (1.1) without contrived coefficients which the spin spiral data do not support 
(Shastry et ai 1981). 

Lin-Chung and Holden (1981) however found substantial many-atom interactions, 
calling into question any such fitting to a Heisenberg model. They extracted exchange 
interactions from energy differences, but these are likely to be inaccurate because of the 
difficulty of calculating the total energy of a configuration. The exchange interactions 
are effectively the second derivative of the Hamiltonian, and it would be of use to find 
these more directly. Small and Heine (1984) developed a method for calculating the 
exchange interactions in terms of the ‘couple’ exerted by one spin on a neighbour, or 
the transferred moment at one site due to an exchange splitting on another-in effect 
the first derivative of the Hamiltonian. LH have shown that the exchange interactions as 
defined in equation (1 2) are strongly affected by the amount of order in the surrounding 
shells. Since it is these results that form the basis of the present work, we now go into 
them in more detail. 

LH set up random configurations in Fe with given average magnetization 
(ti)  = (o,o, COS e) (1.5) 

and determined the effective nearest-neighbour and next-nearest-neighbour exchange 
interactionsJl and J z  as a function of 8 by the couple method, in a way which gives them 
as second derivatives of the Hamiltonian as defined in equation (1.2). In the FM state 
( e  = 0) Jl is slightly greater than J,. As the system disorders with increasing tempera- 
ture, J ,  increases and J 2  decreases (figure l ) ,  so that at the DLM end the interaction is 
almost entirely between nearest-neighbours. Longer-range interactions are smaller in 
magnitude and fall off rapidly with increasing disorder. An independent check has been 
madeof thesumJ,,,oftheJ,;thisagreeswith thevaluesusedforJl andJz,so thatlonger- 
range interactions are unimportant. We are assuming these interactions to be isotropic. 
From symmetry considerations, the Jii must be even functions of magnetization; we 
therefore fit them to the form 

(1.6) 
Here U is the average magnetization on shells of atoms ‘near’ i and j .  (The meaning of 
‘near’ is discussed in section 2.) The values of A and B for nearest- and next-nearest 
neighbours are 
A ,  = 2.5 mRyd 

Jii =Aii  + Bp[a( i ,  j ) ] ’ .  

3, = -1.5 mRyd 

A z  = 0.2mRyd BZ = 0.6 mRyd. (1.7) 
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Ficure 1. Nearest- and next-nearest-neighbour exchange interactions as functions of the 
mean square magnetization a2 in the surrounding shell. 

The variation is due in some way to the change in the band structure on disordering. LH 
argue that the range of exchange interactions is reduced in the disordered state as a 
result of the reduction in electron mean free path through disorder scattering. Heine et 
a1 (1990) show how the behaviour of the couplings may also be understood through 
perturbation theory. Hubbard (1979a, b) had also observed the effective exchange 
interaction to increase with disorder. The tendency for the interactions to be of short- 
range in the DLM state was also noted by Oguchi et a/ (1983), whose CPA calculations 
show that the nearest-neighbour interaction dominates. Lipiriski (1989) does however 
find large second- and third-neighbour interactions in the DLM state, also in the CPA. The 
Hamiltonian isin any case rather unusual and we shall be investigatingitsconsequences. 
This behaviour of the exchange interactions effectively means that magnetic excitations 
have low energy in the FM state. As the disorder increases, the system becomes stiffer 
towards further disorder, leading LH to speculate that substantial SRO remains in the 
paramagnetic state. 

We investigate this idea both analytically, by the ESM, and numerically, by Monte 
Carlo simulation, comparing the above model of Fe with a classical Heisenberg ferro- 
magnet. We look at the spin correlation function in particular, in order to investigate 
the degree of SRO in the paramagnetic phase and the existence or otherwise of clusters 
in the ferromagnetic phase. If the correlation for nearest- and next-nearest neighbours 
is greater than in the corresponding Heisenberg model, we can conclude that substantial 
SRO exists above T,. We must say now that our calculations show no evidence of 
substantial SRO, and conclude that static electronic structure calculations do not lead to 
unusual amounts of SRO. This is in agreement with the heat capacity and susceptibility 
data, but does not describe the neutron data, which essentially give a time-averaged 
correlation function; we do not claim to have a Hamiltonian for the dynamics. 

In the next section we discuss the Hamiltonians we shall be using and the type of 
Hamiltonian that would lead to SRO. It appears to be difficult to find any Hamiltonian 
with short-range many-atom interactions that would lead to SRO. The exchange inter- 
actions for iron are fitted to a Hamiltonian that can be solved exactly in the ESM, and the 
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results so obtained are described in section 3. The magnetization is affected by the many- 
atom interactions, but the SRO is unaffected. The ESM ignores higher-order correlations 
that may be important in this case; for this reason, we have carried out Monte Carlo 
simulations, as reported in section 4. This shows the same trends. Our results for the 
absence of SRO seem to be suficiently robust that our conclusions will not be affected 
by the details of the fitting, as shown by our results for a model with exaggerated non- 
painvise interactions. We conclude, in section 5, that the data for iron do not support 
the existence of substantial SRO. 

K S Chana et a1 

2. Hamiltonian 

We shall be looking at several Hamiltonians, taking as a reference the classical nearest- 
neighbour Heisenberg model (NNHM) in equation ( 1 . 1 ) .  The effective spin Hamiltonian 
relevant for iron is an immensely complicated functional of the magnetization, even in 
the static approximation. To study its statistical mechanics, whether analytically or by 
simulation. requires extrapolation from the small subset of phase space for which the 
energies have been calculated, which inevitably leads to some ambiguities. 

The basic idea is that the exchange interactions in iron are stronger in the DLM state 
than ia the FM state, as shown in equations (1.6) and (1.7). J;, depends on the band 
structure and therefore on the order in the surrounding shell through the parameter 

o(i,j) = 1 $k/z(i,j)l (2.1) 
kE.5ii.j) 

whereS(i, j )  is theshellof neighboursof atomsiandj, and z(i, j )  is the number of atoms 
in that shell. The question now arises of the degree of locality: how large a shell S(i, j )  
isneeded todefine thrinteractions? One Limit is for S(i, j )  toencompass the entire solid. 
This then gives us a type of MFT, where the (short-range) interactions depend on 
the (long-range) order parameter. Let us consider a nearest-neighbour interaction J .  
Suppose the zero-field magnetization in the NNHM to be a function M H ( k B T / J ) ;  the 
magnetization in the non-pairwise model will then be 

M ( T )  = M H ( k s T / ( A  + EM’)) (2.2) 

to be solved self-consistently. If J increases with decreasing manetization, the mag- 
netization will initially fall more rapidly with reduced temperature TITc than in a 
Heisenberg model. The magnetization curves will be distorted below Tc. All zero-field 
quantities above Tc will be identical to those in the Heisenberg model. If the shell S(i, j )  
is fairly large, equation (2.2) still provides a good ‘mean field’ solution of the problem 
that reduces to the Heisenberg model in the case B = 0. The other limit is for S(i, j )  to 
consist ofonly the atomsiandjthemselves. Thisleads toa Hamiltonian with biquadratic 
pairinteractions, asstudiedbyBrown(1971) andothers. Thelarger theshell, thesmaller 
the fluctuations in J and the smaller the deviation from the Heisenberg model. LH find 
that the interactions depend principally on the nearest-neighbour shell. On that basis, 
we will take the shell to consist of the nearest neighbours of i and j. For J1, this consists 
of 16 sites (including i and j);  for J 2 ,  this consists of 12 sites. 

It must be stressed that the exchange parameters calculated by LH are the second 
derivative of the Hamiltonian with respect to the directions of the magnetization, as in 
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equation (1.2), and not the coefficients in a Hamiltonian of the form (1.1). To dem- 
onstrate the importance of this distinction, we first consider the extreme case E ,  = - A ,  
or 

J ,  = Jsin’B (2.3) 

in which the exchange interaction vanishes in the FM state. Suppose that this is the 
coefficient in a Hamiltonian of the form (1.1). The energy of the ferromagnetically 
ordered state is zero, a s J ,  = 0; however, it is unstable towards the reversal of a spin. 
Reversing a spin turns on ferromagnetic interactions in the neighbourhood of the spin, 
the number of bonds depending on the degree of locality of the Hamiltonian. Since the 
majority of these bonds will be formed between ferromagnetically aligned spins, the 
total energy will be reduced, and the ferromagnetic state will be unstable. Similarly, the 
energy of a domain wall will be negative. Now if J,(B = O)/J,(B = n/2) is just large 
enough to stabilize the FM state, one could imagine that the domain wall energies will be 
small and the reversed-spin clusters described by Lowde eta1 (1983) would be observed 
at finite temperatures. Our Hamiltonian is however not of this form. The calculations 
of LH give the second derivative of the Hamiltonian; any instability of the FM state would 
show up in these energies. 

We do not have a simple expression for the Hamiltonian itself, but only for its second 
derivative .Ip We have attempted to integrate this twice to obtain the Hamiltonian: the 
quadratic form of the J,i in equation (1.6) suggests a quartic Hamiltonian with an 
inconveniently large number of 4-spin terms. We have tried to fit the exchange inter- 
actions to four-site coefficients arising from a fourth order perturbation expansion of 
theelectronicenergyinpowersoftheexchangefield, but no reasonable fit wasobtained, 
in the sense that the coefficients did not fall off in the expected way with the size of the 
four-site loops (unpublished). This may be due to the existence of higher order terms, 
or to the localization effect mentioned above. 

Although we have not succeeded in deriving a complete Hamiltonian, there are two 
ways in which we can use the J,i. Firstly, one can start with the ferromagnetic state and 
rotate all the spins by the same angle 6’ in random directions away from the L axis. The 
interactions can then be integrated, as shown in section 3, to give the dependence of the 
energy on order. This is 

V(u2) = V(0) - A d  - $Bo4. (2.4) 

Secondly, LH found that the couple acting on atom i as it is rotated in a random 
environment is nearly proportional to sin Bi over the full range of 8, from 0 ton,  where 
8, is the angle with respect to the direction of magnetization. One can then use the 
parameters in equations (1.6) and (1.7) to give the change in the energy on rotating a 
single spin in an arbitrary environment. This is precisely the information required for a 
Monte Carlo simulation. The difficulty of not having an explicit Hamiltonian does 
not therefore vitiate a Monte Carlo calculation. Section 4 gives the results of such a 
calculation. 

Our calculations will focus principally on four systems: 

(i) the nearest-neighbour Heisenberg model (NNHM) in equation (1.1); 
(ii) iron with many-atom interactions, as parametrized by equations (1.6) and (1.7); 
(E) iron with pairwise exchange interactions after Luchini and Heine (1989); two 

fits were used: (1) J ,  = 0.68 mRyd, J 2  = 1.67 mRyd; J 3  = -0.62 mRyd, J4 = 
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0.17 mRyd, Js = 0 and (2) J1 = 1.34 mRyd, 52 = 0.73 mRyd, J, = -0.36mRyd, J ,  = 
0.05 mRyd, J, = 0; 

(iv) the extreme case of equation (2.3), in which the exchange interaction vanishes 
in the FM state. 

The exchange interactions referred to here are as defined in equation (1.2). We have 
investigated these systems by the ESM and (with the exception of (iii)) Monte Carlo 
simulation. 

K S Chana et al 

3. The extended spherical mode (ESM) 

This is an approximation for the statistical mechanics of a Hamiltonian whose functional 
form isnot known butwhosevaluesare knownat selectedpointsinphasespace (Samson 
1989). It involves splitting the problem into an energy E and an entropy S. The energy 
is the value of the Hamiltonian for the configuration in question; the values used here 
have been calculated by the recursion method. The entropy is the logarithm of that area 
of phase space which we assume to be degenerate with the chosen configuration. In 
practice we approximate the Hamiltonian H({A,}) by an arbitrary function VT(A, 8, c) 
of three macroscopic quantities: the amplitude A of the exchange field, the order 
parameter A cos (3 and a SRO parameter c. 

N 

A C O S B =  -Eai I;;=, I 
N 1 

(A' sin28)c = - E A,lAi . AI - 
N,,,=, 

N 

22 a q = i  (3.4) 
<.I = I 

where N is the number of atoms and {Aii} are coefficients, describing the range of the 
correlations, that may be fitted to the Hamiltonian. If A,i = 1/z for nearest neighbours 
and zero otherwise, z being the coordination number, c becomes the nearest-neighbour 
correlation. The coefficients {AJ could depend on the other parameters. The entropy 
S(A, 0, c) is the logarithm of the area of phase space subject to the three constraints 
(3.1)-(3.3) and can be found in closed form in termsof lattice Green functions. The free 
energy V ,  - TS is then minimized with respect to the parameters. Samson (1989) has 
applied this approach to the spin spiral data of Luchini and Heine (1989). He did not 
take account of their alternating tilt data, as those configurations refer to states with 
ferromagnetic order. In the case where cis the nearest-neighbour correlation, its value 
at Tc is small (0.282 for a BCC lattice); to obtain SRO one would require the Hamiltonian 
to depend on a longer-range set of Aii. In that case however, a fit of the [ 1001 spin spirals 
to longer-range painvise interactions shows very little difference from a fit to nearest- 
neighbour anharmonic interactions. The pairwise exchange interactions in system 111 
are those calculated from a fit to both spin spiral and alternating tilt configurations 
(Luchini and Heine 1989) and will lead to a slightly enhanced SRO. 
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For pakwise interactions the ESM reduces to the spherical model of Berlin and Kac 
(1952). The fitting procedure we use for many-atom interactions is to substitute the 
Hamiltonian in the form VT(A, 0, c) into equation (1.2) and compare the resulting Jq 
with equation (1.6). To obtain a closed set of equations, we need to fit the mean square 
magnetization U’ of the shell S(i, j )  of neighbours of atoms i and j to a function of the 
parameters. This is 

[o(i,j)]’ = cos2e + c‘ sinZB (3.5) 

where 

and 

ckl = ((A, . A,) - (A,) . (A,))/A2 s i d e  (3.7) 

isthecorrelation behveentransversefluctuationsofspinskandl. Nowc’involveslonger- 
range correlations than c, so that we can reasonably assume an upper bound to the 
effects of the many-atom interactions to be the case c’ = c; this will be taken in the 
following. In the ESM U’ is a constant independent of i andj. 

To fit a Hamiltonian to the interactions in equation (1.6), we imagine obtaining a 
configuration with given 0 and cfrom the FM state by rotating each spin an angle 0 about 
a random axis in the xy plane, so that 

(3.8) e ,  = (sin 0 cos vi, sin 0 sin vi, cos e) 
with the vi correlated if necessary: 

(e ,  . ii) = d e  + cij sin’e. 

The couple on 8, is 

a E U$-- (q . i j )  = U,,, cos e sin e (1 - c )  
dV _ = _  
dB aei 

where .Itot is the sum of the exchange interactions acting on atom i: 

J,,,(o’) = JQ(u’). 

The energy relative to the FM state is therefore 

i 

which is 

V ( d )  = V(0) - A d  - $Bo4 

ifJ has the form of equation (1.6). 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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This is equivalent to fitting the Hamiltonian to the form 

-A -+B c Aiibi . i ,)  A,$, . t, (3.14) 
if q 

subject to the mean spherical constraint 

It,lZ = N .  (3.15) 

The ESM effectively replaces the model by a spherical model with parameters that can 
vary with magnetization and SRO. Below Tc the spherical model (Berlin and Kac 1952) 
gives a magnetisation curve 

cosB(T) = v m  (3.16) 

where pf is the mean-field Curie temperature, and a SRO parameter 

where Tc = p' /G(l)  andk?' = $Jmt(02) 

c = 1 - 1/G(1) (3.17) 

where 

(3.18) 

is a lattice Green function. We then solve equations (3.5) an (3.16)-(3.17) self-con- 
sistently. We first take the A,, as constants; these equations then reduce to a quadratic in 
cos'(0). If B > A ( l  - Zc), the interactions are much stronger in the FM state and there 
isafirstordertransiti0n;ifB = 0,werecoverthesphericalmodelorsystemI;ifB < -A, 
the FM state is unstable, B = - A  being system IV. This gives us the three special cases 

[(I  - r ) l i 4  B = A/(1  - 2c) 

cos 0 = (1 - f)l{2 B = O  

(1 - .\/,)1/2 B =  -A t (3.19) 

which are plotted in figure 2 together with the magnetization cume calculated for Fe in 
system 11. In Fe, JtOt decreases with magnetization, and the ratio Jl/J2 also varies; this 
places Fe in an intermediate position between the second and third cases. 

Table 1 shows the calculated Curie temperatures in the systems describcd in section 
2. and table Zshows the correlation function at Tc. Values derived from the Monte Carlo 
simulation described in the next section are also listed. The Curie temperatures in the 
ESM are slightly smaller than those calculated by Monte Carlo simulation. Note that the 
correlation function for iron on the basis of many-atom interactions is almost identical 
to that of the NNHM; this is simply because J ,  dominates in the paramagnetic state. With 
longer-range painvise interactions, there is slightly more SRO. 

Figure 3 compares the paramagnetic behaviour of the SRO parameter for the NNHM 
(I) and the extreme case B = -A(IV). They coincide at Tc; at higher temperatures the 
SRO is slightly larger in the extreme case than in the NNHM because of the continuing 
increase of J with disorder. 

It may be argued that the decoupling implicit in the ESM would not permit study of 
the type of four-spin correlations discussed in section 2 that could lead to coarse-grained 
disorder. For thisrcason we have alsocarriedout MonteCarlosimulationsofthesystem. 
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fi 

0.2 - 

FigureZ. Magnetization in theBM for many-atominteractionsgiveninequation (3.19).The 
curves from top to bottom are (i) B = A/( I  - 2c) (interactions strongest in FM state), (ii) 
B = 0 (Heisenberg model), (iii, bold line) parameters for Fe and (iv) B = - A  (interactions 
vanishing in FM state). 

Table 1. Calculated Curie temperatures for the systems described in section 2. (I: nearest 
neighbour Heisenberg model, 11: Fe with many-atominteractions.111: Fe with longer-range 
pair interactions, N extreme non-pairwise interactions.) The experimental value for Fe is 
1040 K. 

System Mean field Monte Carlo ESM 

I 5.331/kB 3.95 I l k ,  3.83 I l k B  
I1 2230 K 16W K 1460 K 
111 (1) 1270 K - 914K 
Ill (2) 1260 K - 835 K 
IV 5.33 I l k s  3.111/kB 2.8011kB 

4. Monte Carlo simulations 

The idea behind the Monte Carlo method in statistical mechanics (see e.g. Binder and 
Heermann 1988) is to construct a sample of spin cofigurations which is representative of 
the canonical ensemble at a given temperature T .  The spin on site i is the unit vector 

2, = (sin Bi cos vi ,  sin 8; sin vi, cos 0; ) .  (4.1) 

The simulation at each temperature begins with all spins aligned ferromagnetically. At 
each step of the simulation a site r, is chosen at random, and trial values of cos 8; and v i  
are chosen from uniform random sequences. Separate random sequences are used for 
the coordinates of r,, cos 8, and v i  to avoid possible correlations. With the Hamiltonian 
discussed in section 2, the change in energy associated with this change is 
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Table 2. Correlation function a! Tc for the BCC laiticc calculated by hlonte Carlo simulation 
andiheEsMIoc !her~,remsdescnbcdinrenion2. ( I :  nearcstmighbour Heisenberg model, 
11: Fe with many-atom Interactions. I l l  Fe uith longer-range pair Interactions. n'exrrcme 
non-painrise interactions ) c iA !he SRO parameter 

Monte Carlo 
I 0,163 0.110 0.078 0.057 0.039 0.163 
11 0,156 0.115 0.074 0.058 0.040 0.151 
Iv 0,172 0.118 0.084 0.063 0.044 0.172 

ESM 
IandIV 0,282 0.209 0.165 0.135 0.137 0.282 
I1 0.273 0.214 0.160 0.134 0.133 0.266 
111 (1) 0,221 0.250 0.114 0.131 0.093 0.280 
111 (2) 0.317 0.279 0.178 0,164 0.154 0.338 

U 0  I 
I tl I .5 zn 

TITC 

Figure 5. Nearest-neishhbour arrrelation above Tc. Bold line: extreme case B = -A ;  thin 
line: Heisenberg model. 

(4.2) 

The Jii are the exchange interactions that may be dependent on order. We accept the 
change with probability 

1 i f A E G O  

exp(- AElkT) if AE 3 0. 
W(AE) = [ (4.3) 

This process is continued for as long as is required at each temperature. Averages for 
the required thermodynamic quantities are taken at each temperature. 

The influence of the starting state is important. In the present work we start with 
a ferromagnetically aligned state and then allow the Monte Carlo process to reach 
equilibrium before averages are taken. If relaxation is slow then it may be difficult to 
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determine how many configurations to exclude from the averages. Since we are not 
specifically interested in the critical region, this is not expected to be a serious problem. 
To a large extent the effect of the starting state on the averages can be minimized by 
allowing the sample to be large. In the present method we generate 1000 Monte Carlo 
stepsperspin  afterallow allow in gar el ax at ion timeof200 MCS, andcalculate therequired 
thermodynamic quantities every 10 MCS, allowing R = 100 lattice sums, labelled v, 
1 =z v =z R to be taken. 

Periodic boundary conditions have been used in the simulations to approximate an 
infinite system. Surface effects are therefore eliminated; however, finite sue effects 
remain. Periodic boundary conditions model the bulk behaviour fairly well for large 
clusters (Binder and Heermann 1988). Finite size effects cannot be eliminated; close to 
the phase transition they are important and a distinct phase transition is therefore never 
observed. 

A Monte Carlo simulation requires knowledge of the change in energy on rotating 
a single moment. This could be obtained fairly directly from recursion method cal- 
culations of the moment on a rotated exchange splitting in a random medium, in the 
spirit of the CPA calculations of Hubbard (1979a, b). A check at a few energies shows 
that such energies are consistent with the exchange interactions already calculated; we 
will therefore use the exchange interactions in equation (4.2) to represent the change in 
energy. 

We should point out the danger of Monte Carlo calculations that are not based 
on an explicit Hamiltonian; the process must be consistent with the existence of a 
Hamiltonian even if we do not know what it is. The sum of the energy changes round 
any closed loop in phase space must be zero. We shall illustrate the problem. Suppose 
one has two sites i and j ,  both originally spin up, in a certain environment. Then if one 
succesively flips, i, j ,  i and j in that order, it may be that j is more strongly coupled to its 
neighbours when i is up than down so that less energy is required to flip spin j up than is 
subsequently gained by flipping it down. If spin j does not have the same effect on the 
coupling of spin i to its environment, the sum of the energy changes in this cycle will be 
non-zero. If detailed balance is violated in this way, the Metropolis algorithm may be 
more likely to go round the cycle in the direction for which the total energy change is 
negative.Thuswecan test theconsistencyofthemethodbysummingtheenergychanges 
AEofeachacceptedstep. Ifthemethodisconsistent, thesumwill relaxtoanequilibrium 
value with small fluctuations; if it is inconsistent in the way described above, the sum 
will show an unbounded downwards drift. We observe here that the general trends in 
the Monte Carlo results are the same as in the ESM results, indicating that there is no 
gross discrepancy. 

At every 10 Mcswecalculate the followinglatticesumsfor the reducedmagnetization 
M and the nth neighbour correlation c(n):  

(4.4) 

The magnitude ofM, is 1 at T = 0, and z(n)  is the number of nth neighbours. 
We calculate the following Monte Carlo averages: the mean magnetization 
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0 t Tl T‘ 
Figure4. MonteCarlosimulationsofmagnetization. Thinline: srstemI(Heisenbergmode1); 
bold line: system I1 (Fe); dotted line: system IV (extreme case). Crosses: experimental data 
for Fe (Landolt-Btimstein 1962). 

the root mean square magnetization 

M,, = Vm= 1 u = l  

and the correlation function for the first 5 shells of neighbours 

(4.6) 

(4.7) 

To estimate thc magnetization per atom M, of an infinite system, we calculate M,,, for 
a number of system sizes N from 54(3 x 3 X 3 BCC unit cells) to 2000 (10 x 10 x 10 BCC 
unit cells) and fit to the asymptotic form (Paauw er all975) 

MmS(A’) = M ,  + KN-* (4.9) 
where K is a constant. 

Table 1 gives results for the Curie temperature for the systems described in section 
2, evaluated by MFT, the Monte Carlo simulations and the ESM. The Curie temperature 
is estimated by eye from the magnetization curves, In system I (NNHM) it is found to be 

(4.10) 

This is to be compared with (4.11 2 0.015)J/kB found by Rushbrooke er al(l974) by 
series expansion, 3.83 J / k ,  from the ESM or spherical model and 5.33 J /kB from MFT. It 
also agrees with the Monte Carlo data of Binder er a1 (1970). For the parameters of 
equation (1.7) we find ?’, = 1600 K for Fe, compared with an experimental value of 
1040 K. The reason why this calculation gives a larger Tc than in our previous work is 

T ,  = (3.95 * 0.05)J/kB. 
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Figure 5. Monte Carlo simulations of fint- to fifth-neighbour correlations (from top to 
bottom) for the Heisenberg model (lower thinlines). Fe (bold lines) andentremecase (upper 
thin lines). 

that the nearest-neighbour interaction is large at the DLM end, and it is that J that largely 
determines Tc. The longer-range antiferromagnetic couplings found by Luchini and 
Heine (1989) do not persist in the DLM state. The table also verifies that the ESM 
underestimates Tc while MFT overestimates it. 

Figure 4 plots the magnetization against reduced temperature for all three systems. 
The magnetization in our model of Fe falls slightly more rapidly at low temperatures, 
and less rapidly near TC than in the Heisenberg system. This is because the mean 
exchange interaction increases with decreasing magnetization and hence with increasing 
temperature, effectively stretching the temperature axis. All of our magnetization curves 
deviate considerably from the experimental data; this is inevitable in a classical spin 
model. 

The principal aim of this work is to investigate the possiblity of SRO. We therefore 
calculate the real space correlation function c(n), as defined in equations (4.5) and (4.8). 
Figure 5 shows the temperatuye dependence of the correlations for the first five shells of 
neighbours; table 2 listh their values at Tc. It is immediately apparent that the real space 
correlation function in our model for Fe (11) is almost indistinguishable from that for the 
nearest-neighbour Heisenberg model (I). In both cases the nearest-neighbour corre- 
lation, c(l), is small (0.16) at Tc. The conclusion is therefore that we find no SRO in Fe 
above Tc. c(2) is slightly larger in our model 11, but this is easily attributed to next- 
nearest-neighbour interactions rather than to non-pairwise interactions. The extreme 
case (IV) does show correlations decreasing with temperature rather more slowly than 
in the Heisenberg model; this is due to the increase of the exchange interactions with 
disorder. 
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The correlation functions have also been calculated in the ferromagnetic state in an 
attempt to investigate the possibility of formation of substantial clusters of reversed 
spin. The results, when compared uith the Heisenberg model, do not support this 
claim. The difference between our data and the Heisenberg model reflect the effective 
stretching of the temperature scale and the change in the range of interactions with 
temperature. If substantially sized clusters did form then the nearest- and next-nearest 
neighbour correlation functions in the ferromagnetic state would be much larger than 
we find. These would also imply a higher degree of SRO. 

We can also check the form of the interactions against the temperature-dependence 
of the spin wave dispersion in Fe. Magnon-magnon interactions lead to a decrease of 
magnon energies with temperature in the Heisenberg model. Lynn (1975) reported a 
smaller renormalization, with magnon energies only weakly dependent on temperature 
(even above Tc). This observation, at least within the ferromagnetic phase, could be 
consistent with the increase in thelii with disorder. This increase would compensate for 
the normal energy renormalization; calculations are currently in progress. 

5. Conclusions 

Noevidence has been found in our calculations that Fe behavesin asubstantially different 
way from the nearest-neighbour Heisenberg model. We use an effective classical spin 
Hamiltonian extracted from electronic structure calculations, a Hamiltonian which may 
differ from the NNHM in two important ways. The interactions may be of long range and 
oscillate in sign. Such interactions can yield substantial SRO (Shastry el al 1981) but 
are not supported by the electronic calculations. The effect of disorder and finite 
temperature would reduce the amplitude of the longer-range interactions, making this 
mechanism unlikely. The other approach, the one discussed here based on the results 
of LH, is to assume substantial many-atom interactions. While many-atom interactions 
could lead to coarse-grained disorder, they would also strongly distort the magnetization 
curves in the ferromagnetic phase. 

The question is: if one could calculate the full partition function in the static approxi- 
mation, given a suitable parametrization of the band structure of iron, would the SRO 
differ substantially from that of a nearest-neighbour Heisenberg model? It would require 
an unfeasible amount of CPU time to derive a Hamiltonian for artibrary configurations 
of the magnetization and to calculate the resulting partition function. We cannot say 
what would result from such a study. We have however taken a reasonably large sample 
of configuration space. Our other approximation is the static approximation, which is 
roughly the magnetic equivalent of the Born-Oppenheimer approximation (You and 
Heine, 1982). The magnetization is taken as a classical field precessing slowly in a m -  
parison with electron hopping, and the energy of electrons moving on such a frozen 
configuration is calculated. Although the spin wave stiffness can be calculated suc- 
cessfully from electronic structure data (Luchini and Heine 1989), the physics of the 
entry of the spin waves into the Stoner continuum at qc is missing from our static 
Hamiltonian. The answer to our question that we have now come to is that we cannot 
account for the apparent SRO indicated by paramagnetic neutron scattering in this 
approximation. The observed correlation function may result from dynamic or quantum 
effects, important for wave vectors above qc but omitted in the static approximation, 
which does not include the dynamics. Such effects, if they can be expressed as a classical 
Hamiltonian, would have to lead to effective exchange interactions of a substantially 
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different form from those obtainedin thestatic approximation if the observed correlation 
functions are to be explained. The conclusion however is that electronic structure 
calculations on staticconfigurationscannot on their own explain the correlation functions 
observed by neutron scattering. 
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